T T S N T N N P R N T O N L U N S U SR R O R O O O O O U O O O O O D D T TR O Logh b g
y

0TI FILE COBY - 0}

ARI Research Note 87-63

World Modeler SEI Library Builder

Peter Shell

AD-A189 474

University of California, Irvine By
h

3

K

o

)

N

for .

]

L)
Contracting Officer’'s Representative by
Judith Orasanu D

4

N

BASIC RESEARCH LABORATORY v
Michael Kaplan, Director @
DTIC :

4

ELECTE 2
DEC 2 91987 o4

'0

<

° “H :

o l .
U. . Army p,

Research Institute for the Behavioral and Social Sciences 2
December 1987 "

Approved for public relesse; distribution unilimited. :
37 12 14 166

®

"

!

T PR I T T LI, T R S
LN A o, [N A I D A -«
L A SR O R Y A A

=4 ‘rﬂr‘-v *- e %5

rLPL S

[¥ QW g5 A 4

TS

PN

Nl 2 %

- " P LR N R Ll Tat . B - R I N P S A I S L IR TR R e C et N
e . e e e e Ty A i IS

U. S. ARMY RESEARCH INSTITUTE
FOR THE BEHAVIORAL AND SOCIAL SCIENCES

A Field Operating Agency under the Jurisdiction of the

Deputy Chief of Staff for Personnel

WM. DARRYL HENDERSON
EDGAR M. JOHNSON COL,IN
Technical Dircctor Commanding

e

Research accomplished under contract
for the Department of the Army

University of California, Irvine

Technical review by
Dan Ragland

tercaaian For
NT1e frexl
HEE D G
Lo i e

BAETER SR

..

tigtribution/

© Avaflubility Codes

![fpecial
]
L

Avsail and/er

This report, es submitied by the contracior, has been cleared tor release 10 Defense Technica! Information Center
(DTIC) 10 comply with reguistory requirements. 1t hes been given no primary distribution other than 1o DTIC
and .m'll be available only through DTIC of other reference sarvices such a1 the Nationasl Technica! Information
Service (NTIS). The vicwn, cpinions, anc/or findings contained in this report are those of the suthor(s! and

should not be construed ot an officia: Cepartmen: of the Army position, policy, or decision, untess 30 designated
by other officia! documentation.

- vA""-fw
o

PAPR XS A

[T 4°, ' 8'9 &

4 a 'a A9 &'9.L* Lp 0ip g 8 g g 0 g "0 0 0 0 o 8 0 1 0000 0'0.8 0.0 .0 400 a8 3.0 00 2 0.8 0 0'a 00 800t 3bin b et pb OO PO AR O TN "N TP

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

D REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
B 1. REPORT NUMBER 2. GOVT ACCESSION NO.J 3. RECIPIENT'S CATALOG NUMBER
; ARI Research Note 87-63 W
by
: 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
Interim Report
World Modeler SEI Library Builder July 86 - July 87
6. PERFORMING ORG. REPORT NUMBER
h 7. AUTHOR(s) ®. CONTRACT OR GRANT NUMBER(#)
B Peter Shell MDA903-85-C-0324
' 9. PERFORMING ORGANIZATION NAME AND ADDRESS 0. PROCRAM ELEMENT. PROJECT, TASK
; Universitv of California, Irvine ARERY How Y e
» . L]
: Department of Information and Combuter Science 2Q161102B74F
\ Irvine, CA 92717
" 11, CONTROLLING OFFICE NAME AND ADDRESS 12, REPORT DATE
. U.S. Army Research Institute for the Behavioral December 1987
N and Social Sciences, 5001 Eisenhower Avenue, 13. NUMBER OF PAGES
. Alexandria, VA 22333-5600 8
. Wm" different from Controlling Olfice) | 15. SECURITY CLASS. (of thia report)
X Unclassified
- - 1Sa. DECLASSIFICATION/ DOWNGRADING
SCHEDULE
¥ | n/a
d 16. DISTRIBUTION STATEMENT (of this Report)
) Apnroved for public release; distribution unlimited.
" : 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)
N 18. SUPPLEMENTARY NOTES
: Judith Orasanu, contractinn officer's representative
19. KEY WORDS (Continue on reverse sids 11 y and identify by block number)
N World Modeler Artificial Intelligence
h SEI Learning Models
I LispSE]
20. ABSTRACT (Caxthmw sm roverss sidh i nesvenasy et jdentily by block number)
This research note describes two different libraries (sensor and effector),
¥ vwhich provide an abstract data type called the sensor. The sensor libraries
\ allow an organism proqram to receive environmental data in different forms and
' degrees of filtering, while the effector libraries allow the organism to adapt
: to the environment in a "fair" way.
D)
f DD ,2%"%, W73 comon or 1 nov &8 13 oBsOLETE UNCLASSIFIED
! 1 SECURITY CLASSRIFICATIONR OF THIS PAGE (Wiven Date Entered)
e N T S A e (Lt A S e e e L S e e

{

o

World Modeler SEIl Library Builder
Peter Shell

1. Introduction

The SEI| librarian provides an abstract data type called the sensor, which is used for perceiving the
world. it also provides facilities for defining filtering functions over perceived things in the world. It runs
in Commonlisp, and requires that LispSE| is loaded in first. Although anybody may write a library
function, they should be defined through the filter-defining macros described in this document. \Some
filters of general use are already provided (see Appendix |). ‘

There are two different kinds of libraries: sensor libraries and effector libraries. The sensor libraries
sllow the urganism program to receive environmenta! data in various forms and with various degrees of
filtering. They onl‘yprovide lnformatio’ﬁ;‘a.t!':out the physical environment, and no information about the
organism's internal state. The effector libraries allow the organism to make changes to the
environment, while ensuring that the basic laws of conservation of energy and momentum are obeyed

asmuchasispractical. reoo» 0 Aid oo e
2.Sensor Libraries

The SEI library provides, as well as some basic filtering functions, an abstract data t;pe calied the
sensor. A sensor is something attached to an object (usually part of the organism), and is associated
with one of the sense types (vision, hearing, smel!, taste, and touch). Each of -‘ese senses is capable
of sensing a different kind of World Modeler entity, e.9., objects, emissions, etc., as described in the
LispSE! manual. The senses and entities form the following correspondences:

Sense Entity
Vision Object
Hearing Emissions of type sound.
Smell Emissions of type smel!.
Taste Taste fields of objects.
Touch Contact-type.
e e A A T A) O A A DAL TR CIU IR IR TURIeS

RV A AN e Y T8 Tl N, g Mg B U.a VA) M8 et bkt €a0" “e.2°h. a%d.8'% a'k 2t =2 ot Y O R NI AR A Ba® A% tab o a5 S ab y TR
A . 7 2% (X Datab Bab gt 008 o00 RS 0 k"

AP i

(R Y

L ASS S

4 s,

4

pery

" . '/..".... v

‘;}. - -
A

2 9
LS ")
-

rrras
.)‘:,‘15

I"'l'

8 4,8, 00"
PSS

. .
e e
P T)

.._..,.
YA

L3
Ld

)

Ny W hlg X

Various types of filtering functions may also be associated with sensors. Only entities which pass
through each of these filters are sensed by the organism. The sensor library provides a handful of
pre-defined filtering functions, as well as filter-defining macros.

(def-sensor <sensor-name) <sense-type> <object) <entity-filters> <field-mungers>)

Defines a sensor called <sensor-name), which can sense the {sense-type> sense, and aitaches it to
<object>', making that object a sensor. <object> may be either the name of an object, in which case it is
an atom, or it can be a list whose first element is the name of an object and whose remaining elements
are coordinates specifying the location (in world-wide x, y and z coordinates) on the object where the
sensor should be. if the location is not supplied, then the geometric center of the object is used.

The sensor is associated with the ordered list of filters and constraints named in <entity-filters> (see
def-tilter and def-constraint, below), and with the list of field mungers named in <field-mungers>
(see def-field-munger, below). As with <object), each of the entity filters and field mungers named
In <entity-filters> and <field-mungers> may be either atoms or lists. if they are atoms, then they
name a filter or munger which takes no arguments; if they are a list, then the car of the list names the
filter or munger, and the rest of the list gives values for sensor parameters with respect to that fitter or
munger. The number of parameters given to each filter and munger must be the same as the number of
parameters declared by def-filter, def-constraint or def-fieid-munger. Each filter, constraint or
munger must have been defined before being referenced in def-sensor, and they must be of the
appropriate sense type. Example:

(def-sensor nose smell nosel (combine-smells (smell-distance-constraint 5.0))

())

Combine-smelis is assumed to be some filter which combines the input list of smells into one smell,
Smell-distance-constraint is a constraint which only allows smells within a given distance to be sensed.
For the nose1 sensor that distance is always 5.0 meters. Nose1 has no field mungers.

When more than one entity-filter is specified, the list of entities is successively subjected to each of
the filters in turn. The constraints will be tried before the filters since they are usually cheaper.

(sense 'Csensor-name))

1<obiecD> is normally part of the organism's body. aithough it doesn't have 1o be!

s

PR N AP L AR R AL
A% ':3'1.‘;.‘1:'1:\:\&1

WWWWWWWWWWWW
3

Gets the list of sensory data (entities) appropriate to <sensor-name), passes it through the
appropriate {entity-filters> and <field-mungers>, and returns the processed list of senses. For example,
{sense 'nose 1) would get all the smells which pass through the combine-smelis filter.

(del-filter <name)> <params) {sense-type) . <body>)

General sense-filter defining macro. Defines a method for filtering out entities from a given list of
entities.

<name) is the name given to the filtering function.
<params) is a list of the names of the parameters given to the function, () if none.

<{sense-type) is one of the legal sense types. Only entities corresponding to the sense-type will be
passed through the filter.

<body> Is the actual code to do the filtering. The syntax . <body>" means that it is an implicit progn,
as with defun. The resulting function that is written will contain the <body> as the body, and will take
the parameters described in {params>, plus two parameters, entities and sensorobj, as input. Entities
is a list of entities of the appropriate type. sensorobj is the object that has sensed the entities. The
<body> shouid return a list of entities which is a subset of the input list. Example:

t:: This simple filter reduces the Tist of objects to a list containing
ii: the N closest objects to the organism. It §s assumed that my-min is
ii: defined to be 1ike min but take a :key and :lowest param.
(def-filter closest-objects (n) vision
(my-min entities :lowest n
:key #'(1ambda (obj) (get-object-distance obj sensorobj))))

(del-field-munger <name> <params> <sense-type> <field> . <body>)

Associates a munger with a field of entities of the type corresponding to (sense-type>. Whenever a
field named (lieid> is retrieved, it is munged by each of the field-mungers associated with it by

[o |

)

: e def-field-munger. For now, fieids are only munger after the filters have been executed; i.e., the filters
, .(E will be looking at the original values of the fields, but the organism will be seeing the munged values.
‘ When the body is executed it can be assumed that fie/d is bound to the value of the field. For example:

%
fb
v
<.
4
4
L4
L}
fe 7
a
'Y
~ AT B BT AT P TAP o T -J"""'l'f

LWL L W ™™
Rt o A G e o A Y N A A R A A AN I NI

Landod At

::: For an organism which can only see red or blue. It is
::: assumed that color-sum is some fn which returns the "color sum".
(def-field-munger make-red-or-blue (thresh) vision outside-color
(if (< (color-sum field) thresh)
(make-color :red 255 :blue 0 :green 0)
(make-color :red 0 :blue 255 :green 0})))

(def-constraint <name> <params> <sense-type> . <body>)

Defines a constraint for the entities of type (sense-type>, and calls it <name). The parameters are the
same as for <det-filter>. The difference is that constraints are given one entity at a time, instead of a
list of entites. For each entity they are given, they return either nil or non-nil, to indicate whether the
entity should be allowed to stay in the overall list.

<{params> is a list of the names of the parameters which are given to the constraint function.

<body> is the progn to compute whether the given entity should stay. The body will have as
parameters the parameters described in the <params> list, as well as the two parameters entity and
sensorobj.

Although filters can do everything constraints can, constraints may only take one entity at a time, and
are provided because they may be implemented more efficiently. Whereas filters operate on a whole
list of entities, if an entity can be removed from consideration by only looking at it and possibly the
sensor, then it should be expressed as a constraint. In fact, most filtering can be expressed as
constraints. For instance:

ii: Only sense the smells that are near your "nose" (1.e., less than
7s: max-distance meters away).
(def-constraint smell-distance-constraint (max-distance) smell
(< (vector-distance (emission-origin entity)
(object-location sensorobj))
max-distance))

(pp-sensor <sensor-name>) Pretty-prints the given named sensor. <sensor-name> does not have

_to be quoted.

SRAN NN AT T e

B AU N . et
R N e I T L e

$a TpC Mg _#p g oo b2 Sy ¥a ea N Wa'ata ats 4a ovs _ip gua b . 3 oy 028 .8 828 028 70k aboigh, ala" Aia gto A1
A \ S 22,8282 82 2ta Aba Bl Al

2.1. Auxiliary Sensor Functions

The obvious sense functions such as see and smell can be built on top of the basic sense command.
For example, see means to get all the data from all the sensors of type vision. However, there is as yet
no general model for integrating the various sensory data coming from the different sensors, so the
different lists of entities sensed by the different sensors is simply returned as a list of lists.

2.1.1. See
. Return a list of all the entity lists returned by calling sense on each of the sensors of type vision.

2.1.2. Smell
Return a list of all the entity lists returned by calling sense on each of the sensors of type smel/l.

2.1.3. Taste
3 Return a list of all the entity lists returned by calling sense on each of the sensors of type taste.

2.1.4. Hear
Return a list of all the entity lists returned by calling sense on each of the sensors of type hearing.
i NOTE: be sure not to call listen instead, since it is a reservered Commonlisp function|

) 2.1.5. Feel
Return a list of all the entity lists returned by calling sense on each of the sensors of type touch.

2.2. Object-getting Functions

2.2.1.get-object Cobject-number>
Returns the object with the given number. If the object had already been loaded on the current cycie,
then it doesn’t bother to re-copy the object from C.

2.2.2. get-object-named {name>
Returns the object with the given name. Name must be a string. Uses get-object.

3. Effector Libraries

Effector functions aliow the organism to make changes to the environment in a “fair" way. Fair is
defined here as: try to conserve the laws of conservation of momentum and energy. They may aiso be
thought of macro-operators, the primitive operators being the ones provided by the LispSEI.

Effector functions should be written by individua! members of World Modelers since everybody has a
different idea as to how different effector functions should work. However, a few sample ettectors are

- - e

LT LAY L A" T B -~ -
v AN AP AT AT QR IR T A RS AT IR IO AT P G L R N T T AT AT L ATt e v
! Mty f a) ‘. ¥ \‘l».l ’ * X .\ >, '.\" ‘. A ¥ ' f.- " ""‘ -"-1' -'\n’xJ‘\'" N '\\\ OO

2
-

‘-
-

R -

"

. e €

o

LS SN of

Pl S V]

'y
o ¥

TrLrESFTE

ECNENTN

RV

b

L)
e aa'a

@
3
L

R

N L.

o N R
1N, ()

[4 " .-

provided in the World Modelers SEl directory.

‘.

O

Fa¥otai ¥

-~
-

» 5
-

R

. The Files

The SEI library module is in /usr/worldm/src/sei/seidef.lisp. The compiled form of this for Perqgs is
seidef.sfasl; for Suns it is seidellbin. An initial filter and effector library is located in
/usr/worldm/src/sei/seilib.lisp, seilib.sfasl and seilib.lbin. Additions of general use may be made to
this library, or users may make their own libraries. Libraries are compilable. This document is

-

e g,

Zusr/pshell/worldm/sei/seiprop.mss.

oy

ORI At et e men e
A AR GO N N T S T e
) § L. NN AT S

o S D SR

